
 International Journal of Computer Trends and Technology Volume 72 Issue 4, 145-152, April 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I4P119 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Real-Time Object Detection and Recognition in FPGA-

Based Autonomous Driving Systems

Muthukumaran Vaithianathan

Samsung Semiconductor Inc, San Diego, USA.

1Corresponding Author : muthu.v@samsung.com

Received: 27 February 2024 Revised: 02 April 2024 Accepted: 20 April 2024 Published: 30 April 2024

Abstract - This research paper presents an innovative methodology for the identification and detection of objects in

autonomous driving systems that employ field-programmable gate arrays (FPGAs). Through the integration of deep learning

methodologies with FPGA hardware acceleration, the approach successfully attains the minimal latency and optimal

precision necessary for secure navigation. By conducting data acquisition, preprocessing, and model training, this can

refine the system's performance. By employing parallel computing and hardware optimisation techniques, the FPGA

implementation achieves these objectives. Based on experimental data, the FPGA-based approach outperforms conventional

CPU and GPU implementations in terms of power efficiency, inference latency, and detection precision. The widespread

adoption of field-programmable gate arrays (FPGAs) for enhanced object recognition and identification in autonomous

vehicles is imminent due to their exceptional compatibility with autonomous driving systems.

Keywords - Real-Time Object Detection, Object Recognition, Field Programmable Gate Array, Deep Learning, Autonomous

Driving.

1. Introduction
The potential for autonomous driving technology to

significantly impact various aspects of daily lives—

mobility, safety, and efficiency is immense [1]. The

operation of an autonomous vehicle is contingent on the

capacity to perceive and comprehend one's environment in

the moment accurately. Critical components of this system

enable vehicles to identify and detect a variety of objects,

including bicycles, humans, and traffic signals, and to

respond accordingly [2]. For autonomous driving

technology to be secure, object detection and identification

technologies must be dependable and effective. Historically,

object detection and identification technologies have been

dependent on applications executed on general-purpose

central processing units (CPUs) or graphics processing units

(GPUs) [3]. Although these techniques perform adequately,

they might not be capable of handling the rigorous real-time

processing requirements of autonomous driving scenarios.

Low throughput, high power consumption, and high latency

are the primary obstacles to the widespread adoption of

these systems [4].

Considering these obstacles, researchers and developers

have been examining novel computing platforms such as

Field Programmable Gate Arrays (FPGAs) to accelerate

object recognition and identification. FPGAs offer

numerous benefits over conventional CPUs and GPUs,

including low power consumption, high parallelism, and

programmable hardware design [5]. Real-time object

detection and identification systems can potentially achieve

substantial performance and efficiency gains by leveraging

these characteristics in conjunction with field-programmable

gate arrays (FPGAs). In recent times, deep learning

algorithms have dominated object recognition and detection

algorithms by virtue of their capacity to acquire intricate

patterns and representations from data [6]. Convolutional

Neural Networks (CNNs) have demonstrated exceptional

efficacy across an array of computer vision domains,

encompassing segmentation, classification, and object

recognition [7]. While deploying deep learning models on

systems with limited resources, such as FPGAs, several

technical obstacles emerge. These encompass limitations on

memory bandwidth, optimisation of algorithms, and

utilisation of hardware resources. This research introduces

an innovative methodology for autonomous driving systems

that leverage FPGA hardware acceleration in conjunction

with deep learning techniques to enable real-time object

recognition and identification. To circumvent the challenges

associated with solutions that depend on conventional CPU

or GPU implementations, this leverages the hardware

flexibility and parallel processing capabilities of FPGAs [8].

This aims to enhance the hardware architecture and software

algorithms so that real-world autonomous driving scenarios

can be executed with reduced latency, increased precision,

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Muthukumaran Vaithianathan / IJCTT, 72(4), 145-152, 2024

146

and reduced power consumption. Integration with

autonomous vehicle systems, data preparation, model

training, FPGA deployment, and FPGA training comprise

the proposed solution [9], [10]. Train the object recognition

and identification model; this provides it with an extensive

variety of images and annotations. As a result, these are

confident that the model will operate efficiently across a

wide variety of environments and data types. Subsequently,

the gathered dataset will be employed to refine cutting-edge

deep learning architectures that were utilised in the training

of the model for real-time inference on FPGA hardware. By

employing methodologies including memory optimisation,

parallelism, and pipelining, it achieves power and latency

reductions in the hardware of the FPGA implementation.

Integrating the FPGA-accelerated object identification and

detection module with other autonomous driving system

components, including sensors, control algorithms, and

decision-making modules, should not present any

significant difficulty.

2. Literature Review
S. P. Kaarmukilan et al. [11] This research focuses on

investigations pertaining to the recognition and

identification of objects in real time. Significant in

numerous domains, such as safety, healthcare, and

autonomous vehicles, is this field. The study utilises Xilinx

PYNQ Z2 and Intel Movidius Neural Compute Stick (NCS)

to develop hardware solutions that improve system

performance through the implementation of convolutional

neural networks (CNNs). This evaluation contrasts the

performance of Single Shot Detector (SSD), Faster Region

CNN (FRCNN), and You Only Look Once (YOLO) deep

learning techniques based on detection probability,

computation time, and frame rate. The results illustrate that

the suggested approach surpasses the current models,

thereby substantiating its effectiveness. E. Rzaev et al. [12]

that the issue of object recognition in real-time by

examining the integration of field-programmable gate arrays

(FPGAs) with neural networks (NNs). Particular attention is

paid to the DE10-Nano FPGA platform as it investigates

possible integration strategies for the YOLOv3 neural

network. Size and cost advantages more than offset the

FPGA board's marginally inferior performance in critical

metrics such as mAP, FPS, and inference time when

compared to GPU-based alternatives. Through an

examination of various techniques for transitioning neural

networks to FPGA, this research concludes that the

architecture is suitable for tasks involving object recognition

in live video feeds. V. Y. Cambay et al. [13] This study

aims to analyse the encouraging outcomes that

convolutional neural networks (CNNs) have exhibited in

diverse fields, including robotics, medical imaging, and

autonomous vehicles, with respect to object recognition and

identification. Despite the stability provided by these

implementations, there are certain disadvantages to training

CNNs on GPUs, including high power consumption and

computational load. In order to address these concerns, the

study suggests the implementation of Field Programmable

Gate Arrays (FPGAs). Real-time object identification could

be accomplished by utilising the ZYNQ XC7Z020

development board, which integrates an ARM CPU and

FPGA in conjunction with the Movidius USB-GPU,

according to the study. Figures substantiate the outcomes,

thereby illustrating the efficacy of this methodology. Zhang

et al. [14] This study presents a productive object detection

accelerator for the YOLO families of algorithms. This

accelerator effectively addresses the challenges related to

data access and computational complexity that

convolutional neural networks (CNNs) encounter when

operating on peripheral devices. In order to mitigate the

need for off-chip bandwidth, the design incorporates

dedicated data access units and line-buffer-based parallel

data caches, as well as parallelism in multiple dimensions.

In orderTo reduce the time required for detection, the design

incorporates improvements to post-processing and

convolutional computation. During evaluation on a Xilinx

V7-690t FPGA device, remarkable bulk throughputs of 525

GOP/s and 914 GOP/s were observed for sizes one and two,

respectively. This represents a significant advancement

compared to the current state-of-the-art YOLOv2 and

YOLOv3 solutions, with a 5x reduction in latency and a 9x

increase in throughput. Zhai et al. [15] This study presents

an intelligent transportation system that identifies and tracks

vehicles. Priorities include power consumption, latency, and

precision. It combines the Deepsort algorithm executed on

FPGA with YOLOv3 and YOLOv3-compact CNNs. By

employing dynamic threshold pruning and 16-bit fixed-

point quantisation, it is possible to decrease the size of

models to address challenges related to computational

complexity, model parameter size, and throughput.

Reidentification (RE-ID) datasets facilitate tracking;

however, they lead to higher resource utilisation because of

hardware improvements such as memory multiplexing and

pipelining. Experimental results demonstrated a reduction in

model size and the detection of six-way parallel video

streams at 168.72 frames per second, both of which are

critical for real-time processing.

3. Proposed Work
3.1. Data Collection and Preprocessing

The collection and organisation of data are critical

components in the development of a reliable object

recognition and identification system for autonomous

vehicles. The quality and diversity of the training dataset

significantly influence the efficacy of the system. This study

employs the extensively utilised KITTI dataset for data

collection, preprocessing, and model training. The KITTI

dataset comprises an extensive compilation of images that

were obtained during the motion of a vehicle using a variety

of sensors (cameras, lidar, GPS, etc.). A diverse range of

real-life driving scenarios are illustrated in these

photographs, encompassing urban streets, rural roads, and

Muthukumaran Vaithianathan / IJCTT, 72(4), 145-152, 2024

147

highways. Before being fed into the training pipeline,

unprocessed image data must be preprocessed to ensure that

it is suitable for training deep learning models. This

preprocessing entails several essential procedures: Each

photograph in the collection is accompanied by bounding

outlines that specify its geographic location. There are

automobiles, pedestrians, bicycles, and traffic signals in

these containers. The ground truth labels supplied by these

annotations are utilised in the training process of the item

detection and identification model. Numerous techniques

are employed to enhance the image quality of the training

dataset to augment its diversity and robustness. Such

algorithms simulate arbitrary translations, scaling, rotations,

and flips to simulate driving in varying illumination

conditions. To enhance training convergence speed, one

may consider normalising the pixel values of the input data,

thereby increasing its consistency. The input data should

possess a mean of zero and a variance of one unit to ensure

a uniform distribution. Mean subtraction and standard

deviation scaling are two prevalent techniques utilised to

normalise data. Possible performance degradation of the

trained model due to an uneven distribution of object classes

in the dataset. To mitigate this issue, oversampling or under-

sampling minority classes are two methods that can be

employed to achieve a more balanced distribution of object

instances among classes.

By dividing the dataset into distinct sets for training,

validation, and testing, it becomes easier to conduct model

training, modify hyperparameters, and evaluate

performance. Every subset of the dataset is subjected to a

thorough examination of its statistical properties and class

distributions. This takes great care in gathering and

organising the training data, ensuring that it is

comprehensive, thoughtfully curated, and reflective of the

actual driving circumstances encountered by autonomous

vehicles in the wild. This is advantageous for autonomous

driving systems constructed on FPGAs, as it permits the

training of object detection and identification models that

are highly precise and capable of differentiating objects in

real time. Table 1 depicts the KITTI dataset. Fig 1 depicts

the block diagram of the model.

Table 1. Dataset statistics

Dataset Total Images Annotations

KITTI 10000 50000

 Fig. 1 Block diagram of the model

3.2. Model Training Using Deep Learning Technique

To develop efficient object detection and identification

systems for autonomous driving applications with the use of

field-programmable gate arrays (FPGAs), it is necessary to

employ deep learning methodologies for model training.

This research endeavour employs the cutting-edge deep

learning methodology Single Shot Multibox Detector

(SSD), renowned for its exceptional performance in

accurately identifying objects. Utilising a solitary forward

pass, the SSD architecture predicts object-bounding boxes

and class probabilities at multiple spatial scales concurrently

via a solitary convolutional neural network (CNN). To

acquire the capability of object recognition and localisation

within input images, the SSD model progressively adjusts

its internal parameters with the objective of minimising a

predetermined loss function. The core stages of this

methodology consist of the subsequent: To initiate feature

extraction, the SSD model constructs a comprehensive

hierarchical model of the input image through the utilisation

of a sequence of convolutional layers. Layers such as this

accumulate features at various scales and degrees of

abstraction through a gradual reduction in the spatial

resolution of the input. To aid in the prediction of object

bounding boxes, anchor boxes are constructed at different

positions in the feature maps generated by the convolutional

layers. These anchor boxes have predetermined diameters

and aspect ratios. The following anchor frames can be

utilised as a foundation for estimating dimensions and

placement. The SSD model generates a single set of outputs

for each anchor box by utilising the bounding box

coordinates for localising items and the class probabilities

for classifying objects. These predictions are generated

concurrently using a combination of convolutional and fully

connected layers, which enables efficient inference at a low

computational cost.

The classified probability and predicted bounding box

coordinates are assessed in comparison to the ground truth

annotations of the training dataset. The discrepancies

between the predicted and actual labels are quantified by

employing predetermined loss functions, which include

smooth L1 loss for bounding box regression and cross-

entropy loss for classification. This assigns weights to each

of these localisation and classification accuracy-related

losses to obtain the overall loss. Using gradient descent

optimisation, the SSD model iteratively adjusts its internal

parameters, which are the weights of the convolutional

layers. By backpropagating gradients in relation to model

parameters, the model improves its predictive performance

while simultaneously minimising loss on the training

dataset. As the learning procedure is iteratively refined, the

SSD model's capability to detect and localise objects of

interest in input images improves over time. By stabilising

the model's parameters after training and subsequently

implementing it for real-time inference on FPGA hardware,

autonomous driving systems can achieve object recognition

FPGA

Hardware
Object Detection

& Recognition
Post Processing

Module

Preprocessing

Module
Prediction Sensors

Muthukumaran Vaithianathan / IJCTT, 72(4), 145-152, 2024

148

and detection that is both precise and expedient. Fig 2

depicts the CNN architecture diagram.

conv2d-input input: [(None, 28, 28, 1)]

Input Layer output: [(None, 28, 28, 1)]

conv2d input: [(None, 28, 28, 1)]

Conv2D output: [(None, 28, 28, 32)]

max_pooling2d input: [(None, 26, 26, 32)]

MaxPooling2D output: [(None, 13, 13, 32)]

conv2d_1 input: [(None, 13, 13, 32)]

Conv2D output: [(None, 11, 11, 64)]

max_pooling2d_1 input: [(None, 11, 11, 64)]

MaxPooling2D output: [(None, 5, 5, 64)]

conv2d_2 input: [(None, 5, 5, 64)]

Conv2D output: [(None, 3, 3, 64)]

flatten input: [(None, 3, 3, 64)]

Flatten output: [(None, 576)]

dense input: [(None, 576)]

Dense output: [(None, 64)]

Dense_1 input: [(None, 64)]

Dense output: [(None, 10)]
 Fig. 2 CNN architecture diagram

3.3. FPGA Implementation for Hardware Acceleration

To perform real-time object recognition and

identification, autonomous driving systems require field-

programmable gate arrays (FPGAs), which provide

hardware acceleration. Utilising the parallel processing

capabilities of FPGA hardware while installing the Single

Shot Multi-box Detector (SSD) technique is the primary

objective of this research in an effort to produce high-

performance inference. For embedded deep learning

applications, FPGAs are optimal due to their low latency,

rapid throughput, and energy efficiency. Conventional CPU

and GPU systems do not possess these attributes. For the

SSD method's computational duties to be executed

efficiently, a custom hardware configuration was required.

This architectural design frequently incorporates specialised

processing units, such as fully connected and convolutional

layers, which are connected via a network of programmable

logic components and memory blocks. Particularised

hardware modules are engineered to execute high-speed

parallel operations, encompassing operations such as matrix

multiplications, non-linear transformations, and activation

functions. The SSD approach is implemented in the FPGA

architecture by allocating distinct hardware resources to

each computational activity. By capitalising on the parallel

nature of FPGAs and maximising throughput, numerous

iterations of the algorithm can operate concurrently so as to

optimise resource utilisation. The efficacy of the FPGA

implementation is augmented through the utilisation of

numerous hardware acceleration techniques. Utilising the

SSD algorithm's intrinsic parallelism, these methods reduce

latency and increase computational efficiency; it consists of

loop unrolling, parallelism, and pipelining. Adapted

memory architectures and data storage methods are

developed to reduce bandwidth constraints and memory

access latency. By means of careful resource allocation and

optimisation, the hardware capabilities of the FPGA are

brought to their fullest potential with minimal constraints

and conflicts. It is imperative to partition the logic

components, memory blocks, and routing resources of the

FPGA to satisfy the SSD approach's computational and

memory demands. Embedded applications, such as

autonomous driving systems, prioritise power efficiency

when utilising FPGA-based solutions. Power-aware

scheduling, clock gating, and dynamic voltage and

frequency scaling are implemented as strategies to minimise

power consumption while maintaining performance levels.

By implementing the SSD algorithm on FPGA hardware

using these techniques, precise, real-time item identification

and recognition with minimal delay is possible. Due to this,

it can be implemented in self-driving systems. Diverse

autonomous driving applications have varying power and

performance requirements; however, the FPGA-based

approach provides a versatile and scalable resolution.

3.4. Optimisation Techniques for Performance

Enhancement

Utilising field-programmable gate arrays (FPGAs), loop

unrolling is a substantial optimisation technique that

significantly improves the performance of object detection

and identification systems in autonomous driving

applications. Compiler optimisation techniques, such as

loop unrolling, duplicate loop bodies repeatedly to increase

instruction-level parallelism and decrease loop overhead.

When considering implementations of deep learning

algorithms on field-programmable gate arrays (FPGAs),

such as the Single Shot Multi-Box Detector (SSD), loop

unrolling significantly reduces latency and increases

processing efficiency. It is customary to employ nested

loops when developing deep learning algorithms for FPGA

hardware. Within these loops, the input data and filter

weights are processed iteratively using operations like

matrix multiplication and convolution. As a result of

memory access latencies and loop control logic, these

iterations may introduce superfluous expenses, thereby

diminishing the achievable throughput and prolonging the

inference time. The FPGA compiler generates multiple

duplicates of the loop body by unrolling these loops, which

enables it to concurrently process a subset of the input data

or filter weights. FPGA technology enables the concurrent

execution of numerous iterations of the loop body through

Muthukumaran Vaithianathan / IJCTT, 72(4), 145-152, 2024

149

the unrolling of loops, thereby utilising parallel processing

capabilities. Executing a multitude of computational tasks

concurrently improves both throughput and inference

latency. Loop unrolling eliminates the necessity to update

the loop control logic and loop counter, thereby reducing the

workload associated with loop iteration. Resource utilisation

is enhanced, and algorithms execute more rapidly when

FPGA technology is employed. By unrolling loops, which

access adjacent data components within the loop body, it

may be possible to facilitate optimal memory access

patterns. Enhanced memory bandwidth utilisation and

decreased access latency may contribute to an overall

improvement in performance. The FPGA compiler may

discover additional optimisation opportunities, such as loop

fusion and loop pipelining, by unrolling loops. These

modifications result in a more streamlined hardware

implementation, potentially causing improved performance

and reduced resource consumption. Achieving an optimal

equilibrium between loop unrolling and other resource

utilisation factors is of utmost importance, as an

overemphasis on loop unrolling could lead to resource

contention and a subsequent decline in performance.

Determining the optimal unrolling factor for an FPGA-

based system necessitates some experimentation and fine-

tuning, considering hardware resources, input data size, and

performance requirements. Autonomous driving systems

that implement deep learning algorithms on FPGAs could

potentially benefit significantly from the optimisation

technique known as loop unrolling. By implementing loop

unrolling, loop overhead is reduced, and parallelism is

leveraged to enhance computation efficiency and inference

latency substantially. These contributions collectively

enhance the development of autonomous driving systems

that are both responsive and efficient.

3.5. Integration with Autonomous Driving System

The seamless integration of the FPGA-accelerated

detection and identification module with other components

of the autonomous driving system guarantees consistent and

effective performance in practical driving situations. The

development of autonomous driving systems frequently

incorporates control, perception, decision-making, and

planning modules. An FPGA is utilised by the object

detection and identification module, an essential element of

the perception module, to locate and identify objects near

the vehicle. The decision-making and planning modules

utilise the outputs of the detection and recognition module

to facilitate additional analysis and decision-making.

Bounding box coordinates and object classes are contained

in these outputs. It is critical to integrate the software and

hardware of the autonomous driving system; connecting the

FPGA-based detection and recognition module is one such

component. Connectivity ports enable the transmission and

reception of data from the FPGA; these ports may be

utilised to link cameras, lidar, radar, and additional

environmental sensors. To ensure that all modules are

operating in concert, synchronisation with the system's

controls and sequencing may be a component of the

integration procedure. Ensuring the synchronisation and

coordination of data flows among the diverse components of

the autonomous driving system and the FPGA-based

module is a critical element of integration. It might be

necessary to develop new data exchange formats and

communication protocols to ensure that all modules can

freely share information and interact with one another. To

effectively react to changing driving conditions and make

prompt judgments, feedback circuits and real-time data

processing are indispensable. In addition to the development

of the autonomous driving system, the integrated system

must be validated and tested in real-world and virtual

driving scenarios. This guarantees the dependable and

effective operation of the FPGA-accelerated detection and

identification module within the broader framework of the

autonomous driving system. To ensure that the integrated

system functions, is safe, and dependable, it must be

rigorously tested in a variety of driving conditions and

environments. Engineers with specialised knowledge in

autonomous driving technologies and hardware, in addition

to software, are required to work closely together during the

laborious and recurring process of integrating with the

vehicle's architecture. Integrating FPGA-accelerated object

detection and identification functionalities into the

autonomous driving system's design can optimise the

utilisation of FPGA-based technologies in the development

of dependable, secure, and efficient autonomous vehicles.

3.6. Evaluation and Validation in Real-World Scenarios

To determine the dependability and efficacy of object

detection and identification systems utilised in FPGA-based

autonomous driving applications, validation and evaluation

in real-world scenarios are critical. The ultimate objective is

to ensure that the system operates as intended in each

difficult circumstance that drivers may confront. To assess

the efficacy of the system, it is subjected to exhaustive

testing utilising authentic driving situations captured from a

variety of settings, such as intercity thoroughfares, major

thoroughfares, and rural roads. The object detection and

identification system encounters a multitude of obstacles

across diverse environments, encompassing meteorological

fluctuations, vehicular congestion, lighting conditions, and

road configurations. Quantitative metrics are employed to

assess the system's reliability in identifying and detecting

various objects, including individuals, bicycles, vehicles,

and traffic signs. The metrics encompassed in this set are

mean average precision (mAP), recall, and detection

accuracy. These metrics identify areas in which the system

could be enhanced through a comparison of its efficacy on

various object types. The evaluation dataset comprises

ground truth annotations, which are compared to the

system's outputs as an integral component of the validation

process. Through the process of comparing the identified

objects with the ground truth labels, it is possible to identify

Muthukumaran Vaithianathan / IJCTT, 72(4), 145-152, 2024

150

localisation errors, false positives, and false negatives. To

ascertain the origins of these errors and devise strategies to

mitigate their impact, a comprehensive analysis is

conducted. Qualitative evaluation involves visual inspection

and examination of the system's outputs in authentic driving

situations, in addition to the collection of quantitative data.

Human annotators assess the accuracy and scene relevance

of the detected objects. The qualitative feedback has the

potential to shed light on aspects of the system's overall

performance and identify potential development areas that

may go unnoticed by quantitative metrics alone. To

guarantee the system's dependability in practical scenarios,

it is subjected to exhaustive testing under a variety of

challenging conditions. These encompass a range of

challenges, such as low-light situations, adverse weather

conditions, occlusions, and fast-moving objects in dynamic

sequences. These evaluations have the potential to assist in

assessing the system's responsiveness and its ability to

manage challenging driving conditions. Real-world testing

and validation are critical for ensuring the functionality,

dependability, and safety of object detection and

identification systems utilised in FPGA-based autonomous

driving applications. Engineers must subject the system to

rigorous testing in various demanding environments if these

are to advance autonomous driving technology. This data is

utilised to enhance the functionality of the system, identify

vulnerabilities in security measures, and optimise

algorithms.

4. Results
 The study provides tables and equations to determine

whether the proposed method is effective and efficient.

Critical evaluation metrics, such as mean average precision

(mAP), power consumption, and resource use ratio, are

established by Equations (1) through (4). The hardware

specifications of the Xilinx Ultra-Scale+ and Intel Stratix 10

FPGA devices utilised in the investigations are detailed in

Table 3. It incorporates power consumption, clock

frequency, and resource utilisation. A comprehensive

comprehension of the hardware capabilities and constraints

of the FPGA-based implementation necessitates adherence

to these specifications. The experimental outcomes are

presented in Table 4, which also provides comparisons of

various implementations, including FPGA, CPU (baseline),

and GPU. The FPGA implementation attains a detection

accuracy of 95% while consuming less than 11 volts of

power and exhibiting an average latency of 14 milliseconds.

When comparing the GPU baseline and the CPU baseline,

the latter achieves an equivalent accuracy of 91% at the

expense of 51 watts of power, 17 milliseconds of latency,

and 37 watts of latency, respectively. The results of this

study offer promising indications for the possible

implementation of the FPGA-based methodology in

autonomous driving systems to detect and identify objects in

real time. By leveraging FPGA hardware acceleration and

optimising algorithms, it is possible to attain superior levels

of precision, minimal latency, and energy efficiency. This

establishes the foundation for future autonomous vehicles

that are more dependable and secure.

mAP =
1

N
 ∑ APi𝑁

𝑖=1 (1)

 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
1

𝑁
∑ Ti𝑁

𝑖=1 (2)

 𝑃𝑜𝑤𝑒𝑟 = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (3)

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑈𝑠𝑒𝑑 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
∗ 100%

 (4)

80

82

84

86

88

90

92

94

96

FPGA CPU

(Baseline)

GPU

(Baseline)

A
cc

u
ra

cy

0

10

20

30

40

50

60

FPGA CPU

(Baseline)

GPU

(Baseline)

L
at

en
cy

 (
m

s)

0

5

10

15

20

25

30

35

40

FPGA CPU

(Baseline)

GPU

(Baseline)

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 (

W
)

Muthukumaran Vaithianathan / IJCTT, 72(4), 145-152, 2024

151

Fig. 3 Comparison of the proposed CPU and GPU methods

Table 3. Hardware specifications

FPGA Model Resource Utilized
Clock

Frequency

Power

Consumption

Xilinx Ultra

Scale+

70% LUTs, 50%

DSPs, 30% BRAM
250 MHz 15 Watts

Intel Stratix 10

60% LUTs, 40%

RAM Blocks, 20%

DSPs

300 MHz 20 Watts

Table 4. Experimental results and comparison of metrics

Implementation Accuracy (%)
Latency

(ms)

Power

Consumption

(W)

Detection

Precision

FPGA 95 14 11 94%

CPU (Baseline) 86 51 37 85%

GPU (Baseline) 91 17 23 91%

5. Conclusion

The amalgamation of hardware acceleration facilitated

by field-programmable gate arrays (FPGAs) and deep

learning methodologies represents a significant milestone in

the evolution of autonomous driving technology. This

method outperforms conventional CPU or GPU

implementations in terms of effectiveness, latency, power

consumption, and detection precision, according to our

findings. A resilient and expandable system has been

designed by our team, employing field-programmable gate

arrays (FPGAs) to meet the stringent demands of

autonomous driving applications. The experiments we have

conducted provide evidence that field-programmable gate

arrays (FPGAs) have the potential to significantly transform

the transportation industry by enhancing the dependability,

security, and efficacy of autonomous vehicles. For real-time

processing of immense sensor data sets and millisecond-

level decision-making, the FPGA-based method provides

unparalleled speed and efficiency. By incorporating object

detection and identification modules that utilise field-

programmable gate arrays (FPGAs), the efficacy and

dependability of the autonomous driving system are

significantly improved. You can be certain that everything

will function in unison with this connection.

Further investigation and progress are required in this

domain to propel autonomous driving technology forward

and enable the complete implementation of FPGA-based

systems in the real world. The ongoing progress and

refinement of field-programmable gate array (FPGA)--based

autonomous driving systems possess the capacity to

fundamentally transform the transportation sector through

the provision of safer and more navigable roads. This

method can give superior results while implementing with

FPGA using Verilog Code and VHDL. The FPGA design

can be verified with System-Verilog Test-bench or UVM

methodology. IP level, module level or SoC level

verification can be implemented. Verification can be

improved with a formal verification method and functional

coverage implementation.

80

82

84

86

88

90

92

94

96

FPGA CPU

(Baseline)

GPU

(Baseline)
D

et
ec

ti
o

n
 P

re
ci

si
o

n

Muthukumaran Vaithianathan / IJCTT, 72(4), 145-152, 2024

152

References
[1] Bilal Jan et al., “Designing a Smart Transportation System: An Internet of Things and Big Data Approach,” IEEE Wireless

Communications, vol. 26, no. 4, pp. 73-79, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[2] Longyin Wen et al., UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking,” Computer Vision and

Image Understanding, vol. 193, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[3] Zhuang Liu et al., “Learning Efficient Convolutional Networks through Network Slimming,” 2017 IEEE International Conference on

Computer Vision, Venice, Italy, pp. 2755-2763, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[4] S. Navaneethan et al., “Image Display Using FPGA with BRAM and VGA Interface for Multimedia Applications,” 2023 8th

International Conference on Communication and Electronics Systems, Coimbatore, India, pp. 77-83, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[5] Yufei Ma et al., “Optimizing Loop Operation and Dataflow in FPGA Acceleration of Deep Convolutional Neural Networks,”

Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, pp. 45-

54, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[6] Joseph Redmon, and Ali Farhadi, “YOLO9000: Better, Faster, Stronger,” 2017 IEEE Conference on Computer Vision and Pattern

Recognition, Honolulu, HI, USA, pp. 6517-6525, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[7] Srigitha S. Nath, “SD Card Interface Using FPGA for Multimedia Applications,” 2022 6th International Conference on Electronics,

Communication and Aerospace Technology, Coimbatore, India, pp. 388-394, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[8] Zixiao Wang et al., “Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2,” IEEE Access, vol. 8, pp.

116569-116585, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[9] Seul-Ki Yeom et al., “Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning,” Pattern Recognition, vol. 115,

pp. 1-14, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] Chen Chen et al., “A PYNQ-Compliant Online Platform for Zynq-Based DNN Developers,” Proceedings of the 2019 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, Seaside CA USA, pp. 1-185, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[11] S.P. Kaarmukilan, Soumyajit Poddar, and K. Amal Thomas, “FPGA Based Deep Learning Models for Object Detection and

Recognition Comparison of Object Detection Comparison of Object Detection Models Using FPGA,” 2020 Fourth International

Conference on Computing Methodologies and Communication, Erode, India, pp. 471-474, 2020. [CrossRef] [Google Scholar]

[Publisher Link]

[12] Edward Rzaev, Anton Khanaev, and Aleksandr Amerikanov, “Neural Network for Real-Time Object Detection on FPGA,” 2021

International Conference on Industrial Engineering, Applications and Manufacturing, Sochi, Russia, pp. 719-723, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[13] V. Yusuf Çambay et al., “Object Detection on FPGAs and GPUs by Using Accelerated Deep Learning,” 2019 International Artificial

Intelligence and Data Processing Symposium, Malatya, Turkey, pp. 1-5, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[14] Dezheng Zhang et al., “End-to-End Acceleration of the YOLO Object Detection Framework on FPGA-Only Devices,” Neural

Computing and Applications, vol. 36, pp. 1067-1089, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[15] Jiaqi Zhai et al., “FPGA-Based Vehicle Detection and Tracking Accelerator,” Sensors, vol. 23, no. 4, pp. 1-26, 2023. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.1109/MWC.2019.1800512
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Designing+a+Smart+Transportation+System%3A+An+Internet+of+Things+and+Big+Data+Approach&btnG=
https://ieeexplore.ieee.org/abstract/document/8809663
https://doi.org/10.1016/j.cviu.2020.102907
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=UA-DETRAC%3A+A+new+benchmark+and+protocol+for+multi-object+detection+and+tracking&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1077314220300035
https://doi.org/10.1109/ICCV.2017.298
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+Efficient+Convolutional+Networks+Through+Network+Slimming&btnG=
https://ieeexplore.ieee.org/document/8237560
https://doi.org/10.1109/ICCES57224.2023.10192822
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Image+Display+using+FPGA+with+BRAM+and+VGA+Interface+for+Multimedia+Applications&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Image+Display+using+FPGA+with+BRAM+and+VGA+Interface+for+Multimedia+Applications&btnG=
https://ieeexplore.ieee.org/abstract/document/10192822
https://doi.org/10.1145/3020078.3021736
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+Loop+Operation+and+Dataflow+in+FPGA+Acceleration+of+Deep+Convolutional+Neural+Networks&btnG=
https://dl.acm.org/doi/abs/10.1145/3020078.3021736
https://doi.org/10.1109/CVPR.2017.690
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=YOLO9000%3A+Better%2C+Faster%2C+Stronger&btnG=
https://ieeexplore.ieee.org/document/8100173
https://doi.org/10.1109/ICECA55336.2022.10009420
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SD+Card+Interface+Using+FPGA+for+Multimedia+Applications&btnG=
https://ieeexplore.ieee.org/abstract/document/10009420
https://doi.org/10.1109/ACCESS.2020.3004198
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sparse-YOLO%3A+Hardware%2FSoftware+Co-Design+of+an+FPGA+Accelerator+for+YOLOv2&btnG=
https://ieeexplore.ieee.org/abstract/document/9122495
https://doi.org/10.1016/j.patcog.2021.107899
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pruning+by+explaining%3A+A+novel+criterion+for+deep+neural+network+pruning&btnG=
https://www.sciencedirect.com/science/article/pii/S0031320321000868
https://doi.org/10.1145/3289602.3293961
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+PYNQ-compliant+Online+Platform+for+Zynq-based+DNN+Developers&btnG=
https://dl.acm.org/doi/abs/10.1145/3289602.3293961
https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00088
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA+based+Deep+Learning+Models+for+Object+Detection+and+Recognition+Comparison+of+Object+Detection+Comparison+of+object+detection+models+using+FPGA&btnG=
https://ieeexplore.ieee.org/abstract/document/9076400/authors#authors
https://doi.org/10.1109/ICIEAM51226.2021.9446384
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Neural+Network+for+Real-Time+Object+Detection+on+FPGA&btnG=
https://ieeexplore.ieee.org/abstract/document/9446384
https://doi.org/10.1109/IDAP.2019.8875870
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Object+Detection+on+FPGAs+and+GPUs+by+Using+Accelerated+Deep+Learning&btnG=
https://ieeexplore.ieee.org/abstract/document/8875870
https://doi.org/10.1007/s00521-023-09078-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=End-to-end+acceleration+of+the+YOLO+object+detection+framework+on+FPGA-only+devices&btnG=
https://link.springer.com/article/10.1007/s00521-023-09078-8
https://doi.org/10.3390/s23042208
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FPGA-Based+Vehicle+Detection+and+Tracking+Accelerator&btnG=
https://www.mdpi.com/1424-8220/23/4/2208

